THE USE OF CFD COMPUTING AT THE MODELLING APPARATUS AND THE TECHNICAL EQUIPMENT IN THE FLUE GASES DESULPHURISATION PROCESS, BASED ON EXAMPLES OF SELECTED PLANTS INSTALLED IN POWER INDUSTRY

ZASTOSOWANIE OBLICZEŃ CFD DO MODELOWANIA APARATÓW I URZĄDZEŃ W PROCESACH OCZYSZCZANIA SPALIN NA PRZYKŁADACH WYBRANYCH WDROŻONYCH W ENERGETYCE INSTALACJI

Wojciech Mokrosz

Mokrosz Sp z o.o., ul. Kozielska 2a, 47 – 430 Rudy mokrosz@mokrosz.pl

Summary

The paper presents the possibilities of CAD/CAM tools application for the scale-up and optimisation procedures in case of selected plants for flue gases desulphurisation, installed in power industry. Based on wet and semi-dry technologies of flue gases desulphurisation a scale-up procedure is described, starting from laboratory research, through a pilot plant scale research to implementation and certification of the plant. The ways and possible application of CAD/CAM tools for scale-up and optimisation of flue gases desulphurisation process are described.

Streszczenie

W referacie zaprezentowano możliwości wykorzystania narzędzi CAD/CAM w procesach powiększania skali oraz optymalizacji wdrożonych w energetyce instalacji odsiarczania spalin. Na przykładach mokrej i półsuchej technologii odsiarczania spalin omówiono proces powiększania skali począwszy od badań laboratoryjnych poprzez półtechnikę do wdrożenia i badań homologacyjnych. Wskazano sposoby i możliwości wykorzystania narzędzi CAD/CAM do powiększania skali oraz optymalizacji procesów oczyszczania spalin.

1. Wprowadzenie

Obliczenia CFD (Computational Fluid Dynamics) stanowią rozwiniętą technologię obliczeniową pozwalającą na badanie dynamiki przepływu płynów. Wykorzystanie obliczeń CFD pozwala "badać model" w różnych konfiguracjach przy zadanych różnych warunkach fizycznych we względnie krótkim czasie i przy znacznie mniejszym koszcie w stosunku do badań modeli fizykalnych. Równocześnie dostępna

staje się informacja o rozkładzie wszystkich fizycznych zmiennych w całym analizowanym obszarze. W eksperymencie numerycznym eliminowane są dodatkowo niedokładności związane z błędem pomiaru. Programy CFD pozwalają uzyskać niezbędne informacje o przepływie płynu (rozkład pola prędkości, pole ciśnienia), ruchu ciepła (pola temperatury) oraz ruchu masy (w tym reakcje chemiczne). Informacje te uzyskiwane są w wyniku numerycznego rozwiązania równań opisujących wymianę pędu oraz bilansu energii i masy.

Prowadzenie symulacji przy wykorzystaniu współczesnych pakietów komercyjnych (CFD) składa się z trzech głównych etapów:

I. Przygotowania danych do przetwarzania (moduł przygotowawczy – preprocesor) obejmującego: zdefiniowanie modelu geometrycznego, dobranie pozycji punktów dyskretyzacji i wygenerowanie siatki obliczeniowej, podanie warunków brzegowych i początkowych, podanie własności fizyko-chemicznych mieszanego płynu, wybór modeli uzupełniających,

II. Przygotowania i przeprowadzenia obliczeń numerycznych tzw. "rozwiązywanie problemu", realizowane w module obliczeniowym – solver (moduł obliczeniowy solver) obejmujące: wybór typu algorytmu, strategii iteracji i aktywacji modeli szczegółowych, dobór parametrów numerycznych (kroku czasowego współczynników podrelaksacyjnych), przekształcenie równań różniczkowych cząstkowych w równania algebraiczne lub równania różniczkowe zwyczajne.

III. Graficzną wizualizację i opracowanie otrzymanych wyników (moduł opracowania wyników – postprocesing) umożliwiającą: jakościową weryfikację rezultatów obliczeń oraz obliczenie wielkości procesowych określanych z lokalnych wartości prędkości, ciśnienia, stężenia, temperatury, itp., wizualizację wyników w formie wykresów i wymiarowych obrazów (2D lub 3D) rozkładów wartości parametrów (prędkości, temperatury, ciśnień, itd.), generowanie wykresów obrazujących zmiany wymienionych wyżej wartości dla wybranych elementów płynu w czasie, generowanie histogramów, analizę wielkości i parametrów j.w. dowolnych przekrojach.

Na Rysunku 1 przedstawiono schemat zawierający podstawowe elementy oprogramowania wykorzystywanego do symulacji przepływów.

Rysunek 1. Podstawowa struktura oprogramowania środowiska Fluent. *Fig.1. Fluent analysis – the basic structure*

2. Modelowanie mokrego absorbera stosowanego w technologii mokrej wapiennej tzw. MOWAP

Modelowanie mokrego absorbera stosowanego w technologii mokrej wapiennej tzw. MOWAP jest istotnym zagadnieniem z punktu widzenie możliwości jego optymalizacji. Znajomość rozkładu pól prędkości w strefie wymiany masy umożliwia optymalizację systemu zraszania. Podobnie można optymalizować pracę separatora kropel. Aktualnie głównym problemem modelowania tego typu procesów jest moc obliczeniowa współczesnych komputerów i związana z tym konieczność wykonywania obliczeń na tzw. klastrach lub serwerach wykorzystujących kilka licencji (CFD). Rozwiązanie takie jest zwykle kosztowne i czasochłonne.

Przedstawione wyniki obliczeń i przyjęte modele dobrano w sposób umożliwiający prowadzenie obliczeń w oparciu o jedną licencję.

Poniżej zaprezentowano wyniki obliczeń rozkładu pól prędkości, temperatur oraz stężeń. Prezentowane modele umożliwiają zmianę gęstości zraszania w dowolnie wybranych obszarach pracy absorbera w np. celu wyrównania pola prędkości oraz modelowanie optymalizację pracy zraszaczy i separatorów kropel.

Na uwagę zasługuje wykorzystanie w numerycznym modelu absorbera natryskowego empirycznego równania opracowanego w wyniku rzeczywistych badań w modelowym absorberze. Badania były prowadzone w warunkach ustabilizowanego przepływu spalin (stałego gradientu prędkości) w całej objętości absorbera. Sposób ten umożliwia analizę wpływu wszystkich parametrów procesu odsiarczania na zmianę stężenia dwutlenku siarki, z uwzględnieniem lokalnych zmian burzliwości związanych z geometrią analizowanego obiektu w całej jego objętości .

Fig. 2. Zones in absorber

Sprawność procesu absorpcji SO₂ wyrażono równaniem [1] w postaci:

$$\eta_{SO2} = 1 - \exp(-\frac{p_{Ag} \cdot a \cdot p \cdot H_{abs}}{n_g})$$
(1)

Obowiązującym przy założeniu idealnej dystrybucji monodyspersyjnych kropel, wyrównanym profilu pola prędkości, niskich stężeniach dwutlenku siarki oraz spełnieniu warunku zaniku oporów wnikania masy w fazie ciekłej.

Wartość współczynnika wnikania masy określono empirycznie jako funkcję prędkości gazu, gęstości zraszania (stosunku L/G), średnicy kropel oraz parametrów fizykochemicznych. Gęstość zraszania wyrażoną jako stosunek L/G zapewniający spełnienie warunku zaniku oporu wnikania masy w fazie ciekłej określono empirycznie jako funkcję czasu retencji zawiesiny w absorberze, nadmiaru stechiometrycznego, stężenia jonów Cl⁻ oraz średnicy cząstek sorbentu.

Poniżej na rysunkach zaprezentowano rozkład profilu temperatur, pól prędkości oraz rozkład pól stężeń ditlenku siarki w absorberze.

Rysunek 3. Rozkład profilu temperatury w absorberze *Fig.3. Temperature contours in absorber*

Rysunek 4. Rozkład profilu prędkości w absorberze. *Fig.4. Velocity contours in absorber*

Rysunek 5. Rozkład stężenia w absorberze *Fig.5. Concentration contours in absorber*

Rysunek 6. Rozkład stężenia w absorberze *Fig.6. Concentration contours in absorber*

3. Modelowanie reaktora pneumatycznego stosowanego w technologii półsuchej.

Model poniżej prezentowanego reaktora opracowano na podstawie badań laboratoryjnych prowadzonych w mikro skali. Przeprowadzone badania umożliwiły opracowanie równania skuteczności odsiarczania uwzględniającego istotne parametry procesowe.

Badania te obejmowały uwzględniały wpływ wilgotności spalin, nadmiaru stechiometrycznego sorbentu Ca/S, powierzchni właściwej sorbentu, stężenia dwutlenku siarki, koncentracji zapylenia oraz wpływ obecności chlorowodoru i popiołu lotnego na proces odsiarczania.

Ilościowy wpływ wybranych parametrów na skuteczność odsiarczania, dla Ca(OH)₂ jako sorbentu przedstawiono w postaci równań empirycznych opisujących skuteczność procesu odsiarczania w dwóch zakresach końcowej temperatury spalin [2].

Dla < 373 K
$$\eta_{SO2} = 1 - \exp\left(1.5 \cdot \Delta T^{-0.5} \cdot a^{0.4} \cdot x_{HCI}^{0.04} \cdot \left(\frac{Ca}{S} \cdot k_{rec}\right)^{0.34}\right)$$
 (2)

Zakres stosowalności równania (2):

 $\begin{array}{l} \Delta T{=}10{\div}45 \text{ K, } a{=}10{\div}21 \text{ m}^2\text{/g, } x_{\text{HCI}}{=}1{\div}250 \text{ ppm,} \\ k_{\text{rec}}{=}5{\div}100, \text{ Ca/S}{=}1,0{\div}1,25 \text{ mol/mol} \\ \text{Błąd korelacji } \delta {=}\pm 15\% \end{array}$

Dla < 373 K
$$\eta_{SO2} = 1 - \exp \left(0.07 \cdot \Delta T^{0.3} \cdot \left(\frac{Ca}{S} \cdot k_{rec} \right)^{0.4} \right)$$
 (3)

Zakres stosowalności równania (3):

 Δ T=45÷250 K, k_{rec}=5÷100, Ca/S=1,0÷1,25 mol/mol Błąd korelacji $\delta = \pm 5\%$

Obliczenia CFD wykorzystano do symulacji przepływu oraz jako narzędzie ilustrujące proces powiększania skali. Ostatecznie beneficjent prowadzonych badań zdecydował się na wdrożenie badanego reaktora co zaowocowało trzema wdrożeniami.

Uzyskiwany w praktyce efekt odsiarczania tej technologii jest lepszy niż uzyskany w trakcie badań laboratoryjnych oraz obliczeń CFD. Aktualnie prowadzone są szczegółowe badania na zrealizowanych i eksploatowanych obiektach rzeczywistych zmierzające do walidacji posiadanych modeli oraz rozszerzenia zastosowań analizowanego reaktora o technologie oczyszczania spalin ze spalarni odpadów.

Rysunek 7. Siatka dyskretyzacji obliczeń reaktora pneumatcznego *Fig.7. Discretization mesh of the pneumatic reactor*

Rysunek 8. Geometria reaktora pneumatycznego *Fig.8. Geometry of the pneumatic reactor*

Poniżej na rysunkach 9÷12 przedstawiono rozkład prędkości średnich oraz trajektorie cząstek ciała stałego w aparacie dla w=15 m/s w gardzieli średnic dla d_{p3} 70µm i d_{p3} = 10

w=15,0 m/s sorbentu d_{p3} = 10µm Fig.9. Velocity contours w=15,0 m/s, sorbent d_{p3} =70µm

Rysunek 10. Trajektorie i prędkości cząstek *Fig.10. Velocity and flow trajectories*

Rysunek 11. Rozkład prędkości średnich w=15,0 m/s sorbentu d_{p3} = 10µm *Fig.11. Velocity contours* w=15,0 m/s, sorbent d_{p3} =10µm

Rysunek 12. Trajektorie i prędkości cząstek *Fig.12. Velocity and flow trajectories*

4. Modelowanie procesów mieszania spalin w tym spalin z amoniakiem w technologii SCR

Zagadnienia związane z mieszaniem spalin zimnych i gorących oraz mieszaniem innych gazów są niezwykle istotne ze względów konstrukcyjnych oraz technologicznych. Poniżej na rysunkach przedstawiono analizę i rozwiązanie problemu mieszania dwóch strumieni spalin gorących bezpośrednio po odpylaczu ze spalinami wilgotnymi i zimnymi po odsiarczaniu z wykorzystaniem mieszalnika statycznego dla zadanej geometrii komina i kanetkie oralin. Podobne rozwiązania mieszalników opracowano dla procesu dystrybu zajednorodnienia koncentracji amoniaku w spalinach przed katalizatorami w instalacji odazotowania spalin SCR

Fig.13. Geometry

Rysunek 14. Siatka dyskretyzacji *Fig.14. Discretization mesh*

5. Modelowanie separatorów kropel

Badania fizykalne odśrodkowych separatorów kropel (wodooddzielaczy) stosowanych w kotłach przepływowych do separacji kropel z pary nasyconej są praktyczne niewykonalne stąd wykorzystanie obliczeń CFD jest jedną z metod analizy pracy tego typu separatorów w różnych warunkach obciążeń oraz dla różnych zakresów zmian parametrów eksploatacyjnych. Poniżej zaprezentowano model i wyniki obliczeń. Opracowany model stosowany jest do symulacji pracy wodooddzielacza, został on również wykorzystany do opracowania charakterystyk ruchowych i równań empirycznych które są pomocne w projektowaniu i optymalizacji kotłów

przepływowych.

Rozkład prędkości średniej dla ciśnienie p = 205,5 bar, stopnia suchości mieszaniny X = 84% oraz ilość mieszaniny parowo – wodnej = 1450t/h

Rysunek 17. Rozkład prędkości średniej *Fig.17. Velocity contours*

Rysunek 18. Rozkład profilu ciśnień *Fig.18.Pressure contours*

Rysunek 19. Trajektoria lotu pojedynczej cząstki *Fig.19.Flow trajectory of singular particle*

Rysunek 20. Trajektoria lotu cząstek *Fig.20.Flow trajectories*

6. Podsumowanie i wnioski

Zaprezentowane w referacie wybrane przykłady zastosowań oprogramowania CFD nie wyczerpują licznych możliwości ich zastosowań. Wszystkie prezentowane przykłady posiadają charakter utylitarny i przyczyniły się do zmniejszenia nakładu inwestycyjnych wdrażanych lub modernizowanych technologii i/lub ograniczenia kosztów eksploatacyjnych.

Wirtualne badania stanowią niejednokrotnie jedyną możliwość analizy procesów których jak w przypadku wodooddzielaczy nie można fizykalnie zmierzyć.

Obliczenia (CFD) w stosunku do badań rzeczywistych umożliwiają znaczne szybsze uzyskanie wyników. Należy jednak zauważyć, że nie mogą one zastąpić rzeczywistych badań, które są nieodzowne i powinny służyć do walidacji uzyskiwanych wyników obliczeń.

Opisywane modele opracowane w oparciu o wyniki badań laboratoryjnych lub odwzorowujące geometrię zaprojektowanych aparatów, walidowane później wynikami pomiarów homologacyjnych z rzeczywistych obiektów stanowią doskonałe narzędzie do projektowania i optymalizacji aplikowanych urządzeń i aparatów.

Oznaczenia - symbols

а	 powierzchnia właściwa dyspersji kropel 	m^{2}/m^{3}
k _A	- współczynnik przenikania masy	kmol/m ² s
n _A	- natężenie przepływu	kmol/m ² s
H _{abs}	 wysokość strefy absorpcji 	m
р	- ciśnienie statyczne w absorberze	Ра
η	 skuteczność odsiarczania 	
Ca/S	- stosunek molowy reagentów w spalinach	mol/mol
Δt	- różnica temperatur pomiędzy końcową temperatur	a spalin i temperaturą
adiabaty	vcznego nasycenia spalin	K
c _{HCl}	- początkowe stężenia HCl w spalinach	mg/Nm ³

Literatura

- [1] Robert H. Perry, Don W.Green "Perry's chemical engineers' handbook", McGraw-Hill 1997r.
- [2] Octave Levenspiel "The chemical reactor omnibook", Corvallis, Oregon 1993r.
- [3] Fluent 6.3 documentation.